Ela on the Nullity of Graphs
نویسندگان
چکیده
The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. It is known that η(G) ≤ n − 2 if G is a simple graph on n vertices and G is not isomorphic to nK1. In this paper, we characterize the extremal graphs attaining the upper bound n− 2 and the second upper bound n− 3. The maximum nullity of simple graphs with n vertices and e edges, M(n, e), is also discussed. We obtain an upper bound of M(n, e), and characterize n and e for which the upper bound is achieved.
منابع مشابه
Ela on the Characterization of Graphs with Pendent Vertices and given Nullity∗
Let G be a graph with n vertices. The nullity of G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. In this paper, we characterize the graphs (resp. bipartite graphs) with pendent vertices and nullity η, where 0 < η ≤ n. Moreover, the minimum (resp. maximum) number of edges for all (connected) graphs with pendent vertices and nullity η are determined, and the extrem...
متن کاملEla Colin De Verdière Parameters of Chordal Graphs
The Colin de Verdière parameters, μ and ν, are defined to be the maximum nullity of certain real symmetric matrices associated with a given graph. In this work, both of these parameters are calculated for all chordal graphs. For ν the calculation is based solely on maximal cliques, while for μ the calculation depends on split subgraphs. For the case of μ our work extends some recent work on com...
متن کاملEla a Characterization of Singular Graphs
Characterization of singular graphs can be reduced to the non-trivial solutions of a system of linear homogeneous equations Ax = 0 for the 0-1 adjacency matrix A. A graph G is singular of nullity η(G) ≥ 1, if the dimension of the nullspace ker(A) of its adjacency matrix A is η(G). Necessary and sufficient conditions are determined for a graph to be singular in terms of admissible induced subgra...
متن کاملEla the Maximum Nullity of a Complete Subdivision Graph Is Equal to Its Zero Forcing Number∗
Barrett et al. asked in [W. Barrett et al. Minimum rank of edge subdivisions of graphs. Electronic Journal of Linear Algebra, 18:530–563, 2009.], whether the maximum nullity is equal to the zero forcing number for all complete subdivision graphs. We prove that this equality holds. Furthermore, we compute the value of M(F, G̊) = Z(G̊) by introducing the bridge tree of a connected graph. Since this...
متن کاملEla Note on Positive Semidefinite Maximum Nullity and Positive Semidefinite Zero Forcing Number of Partial 2-trees
The maximum positive semidefinite nullity of a multigraph G is the largest possible nullity over all real positive semidefinite matrices whose (i, j)th entry (for i 6= j) is zero if i and j are not adjacent in G, is nonzero if {i, j} is a single edge, and is any real number if {i, j} is a multiple edge. The definition of the positive semidefinite zero forcing number for simple graphs is extende...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995